Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Infect Chemother ; 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2266385

ABSTRACT

BACKGROUND: Determination of the release from isolation for coronavirus disease 2019 (COVID-19) in immunocompromised patients who need additional hospitalization for treatment of non-COVID-19 related disease is important to prevent nosocomial transmission. However, there is insufficient evidence for an extended isolation period. MATERIALS AND METHODS: In September 2021, when the Delta variant was dominant, a nosocomial outbreak of COVID-19 occurred in the nephrology ward of a tertiary hospital in Gwangju, Korea. We conducted epidemiological investigations and whole-genome sequencing (WGS) of this virus. RESULTS: A man who underwent kidney transplantation was admitted to our hospital for the treatment of acute kidney injury. He was diagnosed with asymptomatic COVID-19 infection during a pre-admission screening test on September 1, 2021 and underwent isolation. After 10 days of isolation in the COVID-19-designated ward, he was transferred to the general nephrology ward. He underwent steroid pulse therapy (September 17 to September 23, >60 mg/day prednisolone) due to acute T-cell rejection. On September 28, 2021, the first patient with COVID-19 was identified in the nephrology ward, and a rapid-response team was activated to identify additional patients with COVID-19 and prevent the spread of COVID-19. Epidemiological investigations revealed that 12 patients, two caregivers, and three healthcare workers from the nephrology ward were diagnosed with COVID-19. The WGS of specimens from 14 nosocomial outbreak samples and released an index patient exhibited the same Delta variant originating from the B.1.617.2 lineage. This hospital-acquired COVID-19 outbreak in the nephrology ward resulted in two (11.7%) deaths in patients who underwent kidney transplantation. CONCLUSION: We demonstrated that an immunocompromised patient can cause a nosocomial outbreak due to the prolonged shedding of infectious viruses. Prolonged isolation in patients under active immunosuppressive therapy may be necessary to prevent transmission, especially in the hospital setting.

2.
Viruses ; 14(7)2022 06 30.
Article in English | MEDLINE | ID: covidwho-1917790

ABSTRACT

Community mitigation measures taken owing to the COVID-19 pandemic have caused a decrease in the number of respiratory viruses, including the human parainfluenza virus type 3 (HPIV3), and a delay in their occurrence. HPIV3 was rarely detected as a consequence of monitoring respiratory viral pathogens in Gwangju, Korea, in 2020; however, it resurfaced as a delayed outbreak and peaked in September-October 2021. To understand the genetic characteristics of the reemerging virus, antigenic gene sequences and evolutionary analyses of the hemagglutinin-neuraminidase (HN) and fusion (F) genes were performed for 129 HPIV3 pathogens prevalent in Gwangju from 2018 to 2021. Unlike the prevalence of various HPIV3 strains in 2018-2019, the prevalence of HPIV3 by strains with reduced diversity was confirmed in 2021. It could be inferred that this decrease in genetic diversity was due to the restriction of inflow from other regions at home and abroad following the community mitigation measures and the spread within the region. The HPIV3 that emerged in 2021 consisted of HN coding regions that were 100% consistent with the sequence identified in Saitama, Japan, in 2018, and F coding regions exhibiting 99.6% homology to a sequence identified in India in 2017, among the ranks reported to the National Center for Biotechnology Information. The emergence of a new lineage in a community can lead to a mass outbreak by collapsing the collective immunity of the existing acquired area; therefore, continuous monitoring is necessary.


Subject(s)
COVID-19 , Parainfluenza Virus 3, Human , COVID-19/epidemiology , HN Protein/genetics , Humans , Pandemics , SARS-CoV-2/genetics , Viral Fusion Proteins/genetics
3.
Front Microbiol ; 13: 860535, 2022.
Article in English | MEDLINE | ID: covidwho-1817984

ABSTRACT

The number of coronavirus disease (COVID-19)-positive cases has increased in Jeju Island, Republic of Korea. Identification and monitoring of new mutations in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are extremely important to fighting the global pandemic. We report a breakout of the B.1.620 lineage, harboring the E484 mutation in the virus spike protein in a general hospital on Jeju Island. A cluster of cases was detected between August 4 and September 10, 2021, involving 20 patients positive for COVID-19 of 286 individuals exposed to the virus, comprising hospital patients, staff, and caregivers. We analyzed the epidemiological characteristics and spike proteins mutation sites using Sanger sequencing and phylogenetic analysis on these 20 patients. By analyzing genomic variance, it was confirmed that 12 of the confirmed patients harbored the SARS-CoV-2 B.1.620 lineage. The breakthrough rate of infection was 2% in fully vaccinated individuals among these patients. Next clade analysis revealed that these SARS-CoV-2 genomes belong to clade 20A. This is the first reported case of SARS-CoV-2 sub-lineage B.1.620, although the B.1.617.2 lineage has prevailed in August and September in Jeju, which has a geographical advantage of being an island. We reaffirm that monitoring the spread of SARS-CoV-2 variants with characteristic features is indispensable for controlling COVID-19 outbreaks.

4.
Viruses ; 13(10)2021 10 17.
Article in English | MEDLINE | ID: covidwho-1470999

ABSTRACT

This study investigated the infectivity of severe acute respiratory syndrome (SARS-CoV-2) in individuals who re-tested positive for SARS-CoV-2 RNA after recovering from their primary illness. We investigated 295 individuals with re-positive SARS-CoV-2 polymerase chain reaction (PCR) test results and 836 of their close contacts. We attempted virus isolation in individuals with re-positive SARS-CoV-2 PCR test results using cell culture and confirmed the presence of neutralizing antibodies using serological tests. Viral culture was negative in all 108 individuals with re-positive SARS-CoV-2 PCR test results in whom viral culture was performed. Three new cases of SARS-CoV-2 infection were identified among household contacts using PCR. Two of the three new cases had had contact with the index patient during their primary illness, and all three had antibody evidence of past infection. Thus, there was no laboratory evidence of viral shedding and no epidemiological evidence of transmission among individuals with re-positive SARS-CoV-2 PCR test results.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , Reinfection/virology , SARS-CoV-2/immunology , Virus Shedding/physiology , Adolescent , Adult , Aged , COVID-19/diagnosis , COVID-19/transmission , COVID-19 Serological Testing , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Polymerase Chain Reaction , Reinfection/immunology , Republic of Korea , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index , Young Adult
5.
Sci Rep ; 11(1): 14817, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1319044

ABSTRACT

A real-time reverse transcription polymerase chain reaction (RT-qPCR) assay that does not require Emergency Use Authorization (EUA) reagents was tested and validated for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the early stages of the outbreak of coronavirus disease 2019 (COVID-19) in the Republic of Korea. Early diagnosis of COVID-19 enables timely treatment and the implementation of public health measures. We validated the sensitivity, specificity, precision, linearity, accuracy, and robustness of the RT-qPCR assay for SARS-CoV-2 detection and compared its performance with that of several EUA-approved kits. Our RT-qPCR assay was highly specific for SARS-CoV-2 as demonstrated by not amplifying 13 other viruses that cause respiratory diseases. The assay showed high linearity using a viral isolate from a patient with known COVID-19 as well as plasmids containing target SARS-CoV-2 genes as templates. The assay showed good repeatability and reproducibility with a coefficient of variation of 3%, and a SARS-CoV-2 limit of detection of 1 PFU/mL. The RT-qPCR-based assay is highly effective and can facilitate the early diagnosis of COVID-19 without the use of EUA-approved kits or reagents in the Republic of Korea.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/epidemiology , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , COVID-19/virology , COVID-19 Nucleic Acid Testing/standards , Chlorocebus aethiops , Humans , Limit of Detection , Real-Time Polymerase Chain Reaction/standards , Reproducibility of Results , Republic of Korea , Reverse Transcriptase Polymerase Chain Reaction/standards , Vero Cells
6.
Sci Rep ; 11(1): 6009, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1137821

ABSTRACT

The South Korean government effectively contained the coronavirus disease-2019 (COVID-19) outbreak primarily associated with a religious group. We conducted SARS-CoV-2 whole genome sequencing of 66 cases to investigate connections among the initial South Korean cases and the religious group outbreak. We assessed the accuracy of genomic investigation by comparing the whole genome sequences with comprehensive contact tracing records. Five transmission clusters were estimated among the 15 initial cases. The six close-contact cases and two potential exposure pairs identified by contact tracing showed two or fewer nucleotide base differences. Additionally, we identified two transmission clusters that were phylogenetically distinct from the initial clusters, sharing common G11083T, G26144T, and C14805T markers. The strain closest to the two additional clusters was identified from a pair of identical sequences isolated from individuals who traveled from Wuhan to Italy. Our findings provide insights into the origins of community spread of COVID-19.


Subject(s)
COVID-19/pathology , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Child , Child, Preschool , Contact Tracing , Disease Outbreaks , Female , Humans , Infant , Male , Middle Aged , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/metabolism , Republic of Korea/epidemiology , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Whole Genome Sequencing , Young Adult
7.
J Korean Med Sci ; 35(7): e86, 2020 Feb 24.
Article in English | MEDLINE | ID: covidwho-1110268

ABSTRACT

As of February 2020, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak started in China in December 2019 has been spreading in many countries in the world. With the numbers of confirmed cases are increasing, information on the epidemiologic investigation and clinical manifestation have been accumulated. However, data on viral load kinetics in confirmed cases are lacking. Here, we present the viral load kinetics of the first two confirmed patients with mild to moderate illnesses in Korea in whom distinct viral load kinetics are shown. This report suggests that viral load kinetics of SARS-CoV-2 may be different from that of previously reported other coronavirus infections such as SARS-CoV.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pneumonia, Viral , Viral Load , Adult , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/virology , Female , Humans , Kinetics , Male , Middle Aged , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index
8.
Osong Public Health Res Perspect ; 11(3): 112-117, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-844605

ABSTRACT

OBJECTIVES: Coronavirus Disease-19 (COVID-19) is a respiratory infection characterized by the main symptoms of pneumonia and fever. It is caused by the novel coronavirus severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), which is known to spread via respiratory droplets. We aimed to determine the rate and likelihood of SARS-CoV-2 transmission from COVID-19 patients through non-respiratory routes. METHODS: Serum, urine, and stool samples were collected from 74 hospitalized patients diagnosed with COVID-19 based on the detection of SARS-CoV-2 in respiratory samples. The SARS-CoV-2 RNA genome was extracted from each specimen and real-time reverse transcription polymerase chain reaction performed. CaCo-2 cells were inoculated with the specimens containing the SARS-COV-2 genome, and subcultured for virus isolation. After culturing, viral replication in the cell supernatant was assessed. RESULTS: Of the samples collected from 74 COVID-19 patients, SARS-CoV-2 was detected in 15 serum, urine, or stool samples. The virus detection rate in the serum, urine, and stool samples were 2.8% (9/323), 0.8% (2/247), and 10.1% (13/129), and the mean viral load was 1,210 ± 1,861, 79 ± 30, and 3,176 ± 7,208 copy/µL, respectively. However, the SARS-CoV-2 was not isolated by the culture method from the samples that tested positive for the SARS-CoV-2 gene. CONCLUSION: While the virus remained detectable in the respiratory samples of COVID-19 patients for several days after hospitalization, its detection in the serum, urine, and stool samples was intermittent. Since the virus could not be isolated from the SARS-COV-2-positive samples, the risk of viral transmission via stool and urine is expected to be low.

9.
Emerg Infect Dis ; 26(10): 2353-2360, 2020 10.
Article in English | MEDLINE | ID: covidwho-691167

ABSTRACT

External quality assessment (EQA) is essential for ensuring reliable test results, especially when laboratories are using assays authorized for emergency use for newly emerging pathogens. We developed an EQA panel to assess the quality of real-time reverse transcription PCR assays being used in South Korea to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). With the participation of 23 public health organization laboratories and 95 nongovernmental laboratories involved in SARS-CoV-2 testing, we conducted qualitative and semiquantitative performance assessments by using pooled respiratory samples containing different viral loads of SARS-CoV-2 or human coronavirus OC43. A total of 110 (93.2%) laboratories reported correct results for all qualitative tests; 29 (24.6%) laboratories had >1 outliers according to cycle threshold values. Our EQA panel identified the potential weaknesses of currently available commercial reagent kits. The methodology we used can provide practical experience for those planning to conduct evaluations for testing of SARS-CoV-2 and other emerging pathogens in the future.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/standards , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Humans , Laboratory Proficiency Testing , Pandemics , Quality Assurance, Health Care , Reagent Kits, Diagnostic/standards , Real-Time Polymerase Chain Reaction/methods , Republic of Korea , Respiratory System/virology , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2
10.
Osong Public Health Res Perspect ; 11(3): 101-111, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-456729

ABSTRACT

OBJECTIVES: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, in December 2019 and has been rapidly spreading worldwide. Although the causal relationship among mutations and the features of SARS-CoV-2 such as rapid transmission, pathogenicity, and tropism, remains unclear, our results of genomic mutations in SARS-CoV-2 may help to interpret the interaction between genomic characterization in SARS-CoV-2 and infectivity with the host. METHODS: A total of 4,254 genomic sequences of SARS-CoV-2 were collected from the Global Initiative on Sharing all Influenza Data (GISAID). Multiple sequence alignment for phylogenetic analysis and comparative genomic approach for mutation analysis were conducted using Molecular Evolutionary Genetics Analysis (MEGA), and an in-house program based on Perl language, respectively. RESULTS: Phylogenetic analysis of SARS-CoV-2 strains indicated that there were 3 major clades including S, V, and G, and 2 subclades (G.1 and G.2). There were 767 types of synonymous and 1,352 types of non-synonymous mutation. ORF1a, ORF1b, S, and N genes were detected at high frequency, whereas ORF7b and E genes exhibited low frequency. In the receptor-binding domain (RBD) of the S gene, 11 non-synonymous mutations were observed in the region adjacent to the angiotensin converting enzyme 2 (ACE2) binding site. CONCLUSION: It has been reported that the rapid infectivity and transmission of SARS-CoV-2 associated with host receptor affinity are derived from several mutations in its genes. Without these genetic mutations to enhance evolutionary adaptation, species recognition, host receptor affinity, and pathogenicity, it would not survive. It is expected that our results could provide an important clue in understanding the genomic characteristics of SARS-CoV-2.

11.
Osong Public Health Res Perspect ; 11(1): 3-7, 2020 Feb.
Article in English | MEDLINE | ID: covidwho-2631

ABSTRACT

OBJECTIVES: Following reports of patients with unexplained pneumonia at the end of December 2019 in Wuhan, China, the causative agent was identified as coronavirus (SARS-CoV-2), and the 2019 novel coronavirus disease was named COVID-19 by the World Health Organization. Putative patients with COVID-19 have been identified in South Korea, and attempts have been made to isolate the pathogen from these patients. METHODS: Upper and lower respiratory tract secretion samples from putative patients with COVID-19 were inoculated onto cells to isolate the virus. Full genome sequencing and electron microscopy were used to identify the virus. RESULTS: The virus replicated in Vero cells and cytopathic effects were observed. Full genome sequencing showed that the virus genome exhibited sequence homology of more than 99.9% with SARS-CoV-2 which was isolated from patients from other countries, for instance China. Sequence homology of SARS-CoV-2 with SARS-CoV, and MERS-CoV was 77.5% and 50%, respectively. Coronavirus-specific morphology was observed by electron microscopy in virus-infected Vero cells. CONCLUSION: SARS-CoV-2 was isolated from putative patients with unexplained pneumonia and intermittent coughing and fever. The isolated virus was named BetaCoV/Korea/KCDC03/2020.

SELECTION OF CITATIONS
SEARCH DETAIL